69 research outputs found

    INFLUENCE OF THE ADDITION OF 0.5 AND 1% IN WEIGHT OF MULTI-WALL CARBON NANOTUBES (MWCNTs) IN POLY-LACTIC ACID (PLA) FOR 3D PRINTING

    Full text link
    [EN] This research paper presents the characterization of a nanocomposite of polylactic acid (PLA) and carbon nanotubes (MWCNTs) with different percentages of mixture in weight. This thermal characterization determines the influence carbon nanotubes have when those are added into PLA. This last one been used for additive manufacturing (FFF technology).. Once finished the tests, it was observed that the nanocomposite PLA/MWCNTs have a positive application during 3D printing. The extrusion temperatures used in tests were between 177 and 185ºC. The parameters given for the SLISER software, obtained a promising result for the application of a PLA / MWCNT nanocomposite into 3D printing.Cobos, C.; Conejero Rodilla, A.; Fenollar, O.; Ferrándiz Bou, S. (2019). INFLUENCE OF THE ADDITION OF 0.5 AND 1% IN WEIGHT OF MULTI-WALL CARBON NANOTUBES (MWCNTs) IN POLY-LACTIC ACID (PLA) FOR 3D PRINTING. Procedia Manufacturing. 41:875-881. https://doi.org/10.1016/j.promfg.2019.10.010S8758814

    Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite

    Full text link
    This is the peer reviewed version of the following article: Ferri, J.M., Jordà Sempere, José Jorge, Montanes, N. , Fenollar, Octavio, Balart, Rafael. (2017). Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite.Journal of Applied Polymer Science, 0. DOI: 10.1177/0892705717729014 , which has been published in final form at http://doi.org/10.1177/0892705717729014. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Hydroxyapatite (HA), a naturally occurring calcium orthophosphate, possesses the most similar chemical composition to human bone. In this research work, composite materials were prepared using poly(lactic acid) (PLA) as a polymer matrix and HA as an osteoconductive filler for potential use in medical applications. Composites with varying HA content comprised in the 10¿30 wt% range were obtained by extrusion-compounding followed by injection molding. The effect of the HA loading on overall properties was assessed by mechanical characterization using tensile, flexural, impact, and hardness standard tests. Main thermal transitions of PLA-HA composites were obtained by differential scanning calorimetry (DSC) and degradation/decomposition at high temperatures was followed by thermogravimetric analysis. Dynamical behavior was assessed by dynamic mechanical thermal analysis and the dimensional stability was studied by thermomechanical analysis (TMA). As per the results, PLA-HA composites with 20¿30 wt% HA offer the best-balanced properties with a remarkable increase in the Young¿s modulus. The glass transition temperature remained almost constant with slight changes of less than 1C as measured by both DSC and TMA. TMA also revealed a remarkable decrease in the coefficient of linear thermal expansion. The overall results confirm the usefulness of these materials from a mechanical point of view for biomedical applications as they are characterized by high stiffness, tensile strength, and dimensional stability.The authors want to acknowledge the Ministry of Economy and Competitiveness (MINECO) for their financial support through the grant number MAT2014-59242- C2-1-R.Ferri, J.; Jordà Sempere, JJ.; Montanes, N.; Fenollar, O.; Balart, R. (2017). Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite. Journal of Applied Polymer Science. https://doi.org/10.1177/0892705717729014

    Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch

    Full text link
    This is the peer reviewed version of the following article: Ferri, J.M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, Octavio, Balart, Rafael. (2018). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch.Journal of Applied Polymer Science, 135, 4, 45751-. DOI: 10.1002/app.45751, which has been published in final form at http://doi.org/10.1002/app.45751. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] This work focuses on poly(lactic acid) (PLA) formulations with improved toughness by physical blending with thermoplastic maize starch (TPS) plasticized with aliphatic¿aromatic copolyester up to 30 wt %. A noticeable increase in toughness is observed, due to the finely dispersed spherical TPS domains in the PLA matrix. It is worth to note the remarkable increase in the elongation at break that changes from 7% (neat PLA) up to 21.5% for PLA with 30 wt % TPS. The impact-absorbed energy is markedly improved from the relatively low values of neat PLA (1.6 J/m2) up to more than three times. Although TPS is less thermally stable than PLA due to its plasticizer content, in general, PLA/TPS blends offer good balanced thermal stability. The morphology reveals high immiscibility in PLA/TPS blends, with TPS-rich domains with an average size of 1 micrometre, finely dispersed which, in turn, is responsible for the improved toughness.Authors thank the Ministry of Economy and Competitiveness (MINECO), Ref.: MAT2014–59242-C2-1-R for their support. Authors also thank “Conselleria d’Educacio, Cultura i Esport”- Generalitat Valenciana, Ref.: GV/2014/008 for financial support.Ferri, J.; Garcia-Garcia, D.; Carbonell-Verdu, A.; Fenollar, O.; Balart, R. (2018). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science. 135(4). https://doi.org/10.1002/app.45751S45751135

    Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding

    Full text link
    [EN] Wood-like plastic composites were manufactured with a thermoplastic matrix polymer from renewable resources, i.e. high-density poly(ethylene) from bioethanol and a lignocellulosic filler obtained as a byproduct of the industrial distillation of thyme. The potential manufacturing of these composites by injection molding was studied. For this purpose, an in depth study of the effects of the lignocellulosic loading (comprised between 10 and 50 wt%) on the rheological properties of these composites was carried out by using capillary rheometry and model fitting with the Cross-WLF rheological model. In addition, a side by side comparison of the experimental results and those obtained by simulations with MoldFlow® was provided. In addition, the values of the pressure in the cavity and in the sprue were measured and collected by two selectively mounted pressure sensors and the results were compared with those predicted by MoldFlow® with the inputs provided by the Cross-WLF fitting model. The results showed a remarkable increase in viscosity with increasing lignocellulosic filler content, which has a negative effect on overall processability. This phenomenon specifically intense at low shear rates. However, this phenomenon could be potentially minimized using high shear rates because of the shear thinning effect of pseudoplastic fluids. Both the experimental and simulated results suggest the need of higher pressures to fill the cavity with these WPC, specifically for those with high filler content of up to 50 wt%. The results of the study indicate that melt viscosity is highly linked to the cavity pressure which is the dominant factor determining the quality of the final product in plastic injection molding.This research was supported by the Ministry of Economy and Competitiveness – MINECO through the grant number MAT2014-59242-C2-1-R. Authors also wish to thank “Licores Sinc, S.A.” for kindly supplying the thyme wastes.Montanes, N.; Quiles-Carrillo, L.; Ferrándiz Bou, S.; Fenollar, O.; Boronat, T. (2019). Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-019-01388-0SKoivuranta E et al (2017) Improved durability of lignocellulose-polypropylene composites manufactured using twin-screw extrusion. Compos Part A 101:265–272Tufan M et al (2016) Technological and thermal properties of thermoplastic composites filled with heat-treated alder wood. BioResources 11(2):3153–3164Puglia D, Fortunati E, Kenny JM, Editors (2016) Extraction of lignocellulosic materials from waste products. In: Multifunctional polymeric nanocomposites based on cellulosic reinforcements. Elsevier, Oxford, p 408Huang L et al (2016) Sustainable use of coffee husks for reinforcing polyethylene composites. J Polym Environ 26:48–58Fabiyi JS et al (2008) Wood plastic composites weathering: visual appearance and chemical changes. Polym Degrad Stab 93(8):1405–1414Ruiz-Navajas Y et al (2013) In vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. J Food Prot 76(7):1218–1225Díaz-García MC et al (2015) Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods. J Sci Food Agric 95(6):1283–1293Bhullar SK, Kaya B, Jun MB-G (2015) Development of bioactive packaging structure using melt electrospinning. J Polym Environ 23(3):416–423Cicala G et al (2016) Investigation on structure and thermomechanical processing of biobased polymer blends. J Polym Environ 25:750–758George J et al (1996) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37(24):5421–5431Joseph PV et al (2002) Melt rheological behaviour of short sisal fibre reinforced polypropylene composites. J Thermoplast Compos Mater 15(2):89–114Kalaprasad G et al (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. I. Untreated fibers. J Appl Polym Sci 89(2):432–442Kalaprasad G, Thomas S (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. II. Chemical modification. J Appl Polym Sci 89(2):443–450Kumar RP et al (2000) Morphology and melt rheological behaviour of short-sisal-fibre-reinforced SBR composites. Compos Sci Technol 60(9):1737–1751Li T, Wolcott M (2005) Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple. Polym Eng Sci 45(4):549–559Li T, Wolcott M (2006) Rheology of wood plastics melt, part 2: effects of lubricating systems in HDPE/maple composites. Polym Eng Sci 46(4):464–473Li TQ, Wolcott MP (2004) Rheology of HDPE-wood composites. I. Steady state shear and extensional flow. Composites Part A 35(3):303–311Mohanty S, Nayak SK (2007) Rheological characterization of jute/HDPE composites. In: Zhang D et al. (eds) Advanced materials and processing Iv, p 279Ou R et al (2014) Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Compos Sci Technol 93:68–75Hristov V, Vlachopoulos J (2007) Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol Mater Eng 292(5):608–619Mohanty S, Nayak SK (2007) Rheological characterization of HDPE/sisal fiber composites. Polym Eng Sci 47(10):1634–1642Koszkul J, Nabialek J (2004) Viscosity models in simulation of the filling stage of the injection molding process. J Mater Process Technol 157–158:183–187Mazzanti V, Mollica F (2016) In-process measurements of flow characteristics of wood plastic composites. J Polym Environ 25:1044–1050Montanes N et al (2017) Processing and characterization of environmentally friendly composites from biobased polyethylene and natural fillers from thyme herbs. J Polym Environ 26:1218–1230Shenoy A, Saini D (1984) Rheological models for unified curves for simplified design calculations in polymer processing. Rheologica Acta 23(4):368–377Bagley E (1957) End corrections in the capillary flow of polyethylene. J Appl Phys 28(5):624–627Rabinowitsch B (1929) Über die Viskosität und Elastizität von Solen. Z Physik Chem A 145:1–26Cross MM (1965) Rheology of non-newtonian fluids—a new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417Williams ML, Landel RF, Ferry JD (1955) Mechanical properties of substances of high molecular weight. 19. the temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707Carneiro OS, Maia JM (2000) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part I: the influence of fiber type, processing conditions and level of incorporation. Polym Compos 21(6):960–969Crowson RJ, Folkes MJ, Bright PF (1980) Rheology of short glass fiber-reinforced thermoplastics and its application to injection molding I. Fiber motion and viscosity measurement. Polym Eng Sci 20(14):925–933Goldsmith H (1967) Rheology theory and application, Mason SG (eds) Academic Press, p 85Reig MJ, Segui VJ, Zamanillo JD (2005) Rheological behavior modeling of recycled ABS/PC blends applied to injection molding process. J Polym Eng 25(5):435–457Părpăriţă E et al (2014) Structure–morphology–mechanical properties relationship of some polypropylene/lignocellulosic composites. Mater Des 56:763–772Kurt M et al (2009) Experimental investigation of plastic injection molding: assessment of the effects of cavity pressure and mold temperature on the quality of the final products. Mater Des 30(8):3217–322

    Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth

    Full text link
    [EN] Environmentally friendly composites from poly(lactic acid) (PLA) and diatomaceous earth (DE) were successfully manufactured by extrusion, followed by injection moulding. DE was used as a filler; several compatibilizer/coupling agents, namely (3-glycidyloxypropyl)trimethoxysilane, epoxy styrene acrylic oligomer and maleinized linseed oil, were used to improve polymer¿filler interactions. Mechanical characterization was carried out by standard tensile, impact and hardness tests while morphological characterization of the fractured surfaces was conducted by field emission scanning electron microscopy. The effect of DE was evaluated by differential scanning calorimetry and dynamic mechanical thermal behaviour. The results show that the addition of DE provides an improved tensile modulus and induces more brittle composites due to stress concentration phenomena. The addition of compatibilizers in PLA-DE positively contributes to improve ductile properties, thus leading to high environmental efficiency materials with balancedmechanical properties. Specifically, the compatibility improvement between the PLA and DE was good with maleinized linseed oil and contributed to improving the impact strength, which is a key factor in PLA-based composites due to the intrinsic brittleness of neat PLA.This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program number MAT2017-84909-C2-2-R. L. Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and the MECD for his FPU grant (FPU15/03812).Agüero-Rodríguez, Á.; Quiles-Carrillo, L.; Jorda-Vilaplana, A.; Fenollar, O.; Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International. 68(5):893-903. https://doi.org/10.1002/pi.5779S893903685Tornuk, F., Hancer, M., Sagdic, O., & Yetim, H. (2015). LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT - Food Science and Technology, 64(2), 540-546. doi:10.1016/j.lwt.2015.06.030Kuswandi, B., Jayus, Restyana, A., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25(1), 184-189. doi:10.1016/j.foodcont.2011.10.008Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. doi:10.1007/s10311-017-0613-7Horodytska, O., Valdés, F. J., & Fullana, A. (2018). Plastic flexible films waste management – A state of art review. Waste Management, 77, 413-425. doi:10.1016/j.wasman.2018.04.023Trongsatitkul, T., & Chaiwong, S. (2017). In situ fibre-reinforced composite films of poly(lactic acid)/low-density polyethylene blends: effects of composition on morphology, transport and mechanical properties. Polymer International, 66(11), 1456-1462. doi:10.1002/pi.5449Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051Brandelli, A., Brum, L. F. W., & dos Santos, J. H. Z. (2017). Nanostructured bioactive compounds for ecological food packaging. Environmental Chemistry Letters, 15(2), 193-204. doi:10.1007/s10311-017-0621-7Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008Kumar, S., & Maiti, P. (2015). Understanding the controlled biodegradation of polymers using nanoclays. Polymer, 76, 25-33. doi:10.1016/j.polymer.2015.08.044Yahiaoui, F., Benhacine, F., Ferfera-Harrar, H., Habi, A., Hadj-Hamou, A. S., & Grohens, Y. (2014). Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polymer Bulletin, 72(2), 235-254. doi:10.1007/s00289-014-1269-0Ibarguren, C., Naranjo, P. M., Stötzel, C., Audisio, M. C., Sham, E. L., Farfán Torres, E. M., & Müller, F. A. (2014). Adsorption of nisin on raw montmorillonite. Applied Clay Science, 90, 88-95. doi:10.1016/j.clay.2013.12.031Kuswandi, B. (2016). Nanotechnology in Food Packaging. Sustainable Agriculture Reviews, 151-183. doi:10.1007/978-3-319-39303-2_6Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T., & Thakur, V. K. (2018). Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23(4), 383-395. doi:10.1080/1023666x.2018.1455382Gorrasi, G., Tortora, M., Vittoria, V., Pollet, E., Lepoittevin, B., Alexandre, M., & Dubois, P. (2003). Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer, 44(8), 2271-2279. doi:10.1016/s0032-3861(03)00108-3Pasbakhsh, P., De Silva, R., Vahedi, V., & Jock Churchman, G. (2016). Halloysite nanotubes: prospects and challenges of their use as additives and carriers – A focused review. Clay Minerals, 51(3), 479-487. doi:10.1180/claymin.2016.051.3.15Bendahou, D., Bendahou, A., Grohens, Y., & Kaddami, H. (2015). New nanocomposite design from zeolite and poly(lactic acid). Industrial Crops and Products, 72, 107-118. doi:10.1016/j.indcrop.2014.12.055Lorite, G. S., Rocha, J. M., Miilumäki, N., Saavalainen, P., Selkälä, T., Morales-Cid, G., … Toth, G. (2017). Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. LWT, 75, 305-315. doi:10.1016/j.lwt.2016.09.004Cacciotti, I., Mori, S., Cherubini, V., & Nanni, F. (2018). Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 112, 567-575. doi:10.1016/j.ijbiomac.2018.02.018Davoudizadeh, S., Ghasemi, M., Khezri, K., & Bahadorikhalili, S. (2017). Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP. Journal of Thermal Analysis and Calorimetry, 131(3), 2513-2521. doi:10.1007/s10973-017-6771-9Aw, M. S., Simovic, S., Yu, Y., Addai-Mensah, J., & Losic, D. (2012). Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technology, 223, 52-58. doi:10.1016/j.powtec.2011.04.023Medarevic, D., Losic, D., & Ibric, S. (2016). Diatoms - nature materials with great potential for bioapplications. Hemijska industrija, 70(6), 613-627. doi:10.2298/hemind150708069mÖzen, İ., Şimşek, S., & Okyay, G. (2015). Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions. Applied Surface Science, 332, 22-31. doi:10.1016/j.apsusc.2015.01.149Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588Samper, M. D., Petrucci, R., Sánchez-Nacher, L., Balart, R., & Kenny, J. M. (2014). Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polymer Composites, 36(7), 1205-1212. doi:10.1002/pc.23023Khan, M. A., & Hassan, M. M. (2006). Effect of γ-aminopropyl trimethoxy silane on the performance of jute–polycarbonate composites. Journal of Applied Polymer Science, 100(5), 4142-4154. doi:10.1002/app.23441Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Tábi, T., Égerházi, A. Z., Tamás, P., Czigány, T., & Kovács, J. G. (2014). Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres. Composites Part A: Applied Science and Manufacturing, 64, 99-106. doi:10.1016/j.compositesa.2014.05.001Re, G. L., Benali, S., Habibi, Y., Raquez, J.-M., & Dubois, P. (2014). Stereocomplexed PLA nanocomposites: From in situ polymerization to materials properties. European Polymer Journal, 54, 138-150. doi:10.1016/j.eurpolymj.2014.03.004Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329Silverajah, V. S. G., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W., & Hassan, H. A. (2012). Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend. Molecules, 17(10), 11729-11747. doi:10.3390/molecules171011729Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024Liu, H., & Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 49(15), 1051-1083. doi:10.1002/polb.22283Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043Carbonell-Verdu, A., Samper, M. D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:10.1016/j.indcrop.2017.04.050Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Ali, F., Chang, Y.-W., Kang, S. C., & Yoon, J. Y. (2008). Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin, 62(1), 91-98. doi:10.1007/s00289-008-1012-9Xu, Y.-Q., & Qu, J.-P. (2009). Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). Journal of Applied Polymer Science, 112(6), 3185-3191. doi:10.1002/app.29797Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812Pilla, S., Kramschuster, A., Yang, L., Lee, J., Gong, S., & Turng, L.-S. (2009). Microcellular injection-molding of polylactide with chain-extender. Materials Science and Engineering: C, 29(4), 1258-1265. doi:10.1016/j.msec.2008.10.027Singh, S., Ghosh, A. K., Maiti, S. N., Raha, S., Gupta, R. K., & Bhattacharya, S. (2011). Morphology and rheological behavior of polylactic acid/clay nanocomposites. Polymer Engineering & Science, 52(1), 225-232. doi:10.1002/pen.22074B., A., Suin, S., & Khatua, B. B. (2014). Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydrate Polymers, 110, 430-439. doi:10.1016/j.carbpol.2014.04.024Pluta, M., Jeszka, J. K., & Boiteux, G. (2007). Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. European Polymer Journal, 43(7), 2819-2835. doi:10.1016/j.eurpolymj.2007.04.009Paul, M.-A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., & Dubois, P. (2005). Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer Degradation and Stability, 87(3), 535-542. doi:10.1016/j.polymdegradstab.2004.10.011Palsikowski, P. A., Kuchnier, C. N., Pinheiro, I. F., & Morales, A. R. (2017). Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. Journal of Polymers and the Environment, 26(1), 330-341. doi:10.1007/s10924-017-0951-

    Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing

    Full text link
    [EN] Purpose This paper aims to propose using polylactic acid (PLA) as an alternative to nanocomposites in additive manufacturing processes in fusion deposition modelling (FDM) systems and describe its thermal and rheological conditions with multi-wall carbon nanotube (PLA/MWCNT) and halloysite nanotube (PLA/HNT) composites for possible applications in additive manufacturing processes. Design/methodology/approach PLA/MWCNTs and PLA/HNTs were obtained through fusion in a co-rotating twin-screw extruder. PLA was mixed with different percentages of MWCNTs and HNTs at concentrations of 0.5 Wt.%, 0.75 Wt.% and 1 Wt.%. Differential scanning calorimetry (DSC) and capillary rheometry were used to characterise these products, together with an analysis of the melt flow index (MFI). Findings The DSC data revealed that the nanocomposites had a glass transition temperature T-g = 65 +/- 2 degrees C and a melting temperature T-m = 169 +/- 1 degrees C. The crystallisation temperature of PLA/MWCNTs and PLA/HNTs was between 107 +/- 2 degrees C and 129 degrees C, respectively. The viscosity data of PLA/MWCNTs and PLA/HNTs obtained by capillary rheometry indicated that the viscosity of the materials is the same as that of neat PLA. These results were confirmed by the higher fluidity index in the MFI analysis. Originality/value This paper presents an alternative for the applications of nanocomposites in additive manufacturing processes in FDM systems.Cobos, CM.; Garzón, L.; López-Martínez, J.; Fenollar, O.; Ferrándiz Bou, S. (2019). Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing. Rapid Prototyping Journal. 25(4):738-743. https://doi.org/10.1108/RPJ-11-2018-0289S738743254Altınkaynak, A., Gupta, M., Spalding, M. A., & Crabtree, S. L. (2011). Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. International Polymer Processing, 26(2), 182-196. doi:10.3139/217.2419Berber, S. Kwon, Y.-K. and Tománek, D. (2000), “Unusually high thermal conductivity of carbon nanotubes”, available at: https://pdfs.semanticscholar.org/6595/44a005ba8d622c272d4bf737f12e26f8c415.pdf (accessed 23 February 2019).Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045Dong, Y., Chaudhary, D., Haroosh, H., & Bickford, T. (2011). Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites. Journal of Materials Science, 46(18), 6148-6153. doi:10.1007/s10853-011-5605-6Ferri Azor, J.M., Balart Gimeno, R.A. and Fenollar Gimeno, O. (2017), Desarrollo de formulaciones derivadas de ácido poliláctico (PLA), mediante plastificación e incorporación de aditivos de origen natural, Doctoral Thesis, Universitat Politècnica de València, Alcoy.Gao, Y., Picot, O. T., Bilotti, E., & Peijs, T. (2017). Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 86, 117-131. doi:10.1016/j.eurpolymj.2016.10.045Hamad, K., Kaseem, M., & Deri, F. (2011). Melt Rheology of Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends. Advances in Chemical Engineering and Science, 01(04), 208-214. doi:10.4236/aces.2011.14030Harris, A. M., & Lee, E. C. (2007). Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 107(4), 2246-2255. doi:10.1002/app.27261Kim, S. Y., Shin, K. S., Lee, S. H., Kim, K. W., & Youn, J. R. (2010). Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid). Fibers and Polymers, 11(7), 1018-1023. doi:10.1007/s12221-010-1018-4Li, T., Turng, L.-S., Gong, S., & Erlacher, K. (2006). Polylactide, nanoclay, and core–shell rubber composites. Polymer Engineering & Science, 46(10), 1419-1427. doi:10.1002/pen.20629López, J., Navarro, R., Gallego, J. M., Parres, F., & Ferrandiz, S. (2009). Analysis weld seam weak in blow molding large parts made of commodity plastics. Engineering Failure Analysis, 16(3), 856-862. doi:10.1016/j.engfailanal.2008.07.007Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003Richard, T. (2008), “Preparación y caracterización de nanocompuestos en base PLA”, Universitat Politècnica de Catalunya. available at: http://upcommons.upc.edu/handle/2099.1/4791 (accessed 26 July 2017).Singh, V. P., Vimal, K. K., Kapur, G. S., Sharma, S., & Choudhary, V. (2016). High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. Journal of Polymer Research, 23(3). doi:10.1007/s10965-016-0937-1Song, Y., Li, Y., Song, W., Yee, K., Lee, K.-Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design, 123, 154-164. doi:10.1016/j.matdes.2017.03.051Suriñach, S., Baro, M.D., Bordas, S., Clavaguera, N. and Clavaguera-mora, M.T. (1992), “La calorimetría diferencial de barrido y su aplicación a la ciencia de materiales”, Vol. 31, available at: http://boletines.secv.es/upload/199231011.pdf (accessed: 26 July 2017).Wu, W., Cao, X., Zhang, Y., & He, G. (2013). Polylactide/halloysite nanotube nanocomposites: Thermal, mechanical properties, and foam processing. Journal of Applied Polymer Science, 130(1), 443-452. doi:10.1002/app.39179Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112-113, 75-93. doi:10.1016/j.clay.2015.05.00

    Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance

    Full text link
    [EN] This work reports the development and characterization of green composites based on polylactide (PLA) containing fillers and additives obtained from by-products or waste-streams from the linen processing industry. Flaxseed flour (FSF) was first produced by the mechanical milling of golden flaxseeds. The resultant FSF particles were melt-compounded at 30 wt% with PLA in a twin-screw extruder. Two multi-functionalized oils derived from linseed, namely epoxidized linseed oil (ELO) and maleinized linseed oil (MLO), were also incorporated during melt mixing at 2.5 and 5 parts per hundred resin (phr) of composite. The melt-compounded pellets were thereafter shaped into pieces by injection molding and characterized. Results showed that the addition of both multi-functionalized linseed oils successfully increased ductility, toughness, and thermal stability of the green composite pieces whereas water diffusion was reduced. The improvement achieved was related to both a plasticizing effect and, more interestingly, an enhancement of the interfacial adhesion between the biopolymer and the lignocellulosic particles by the reactive vegetable oils. The most optimal performance was attained for the MLO-containing green composite pieces, even at the lowest content, which was ascribed to the higher solubility of MLO with the PLA matrix. Therefore, the present study demonstrates the potential use of by-products or waste from flax (Linum usitatissimum L.) to obtain renewable raw materials of suitable quality to develop green composites with high performance for market applications such as rigid food packaging and food-contact disposable articles in the frame of the Circular Economy and Bioeconomy.This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R.Agüero, Á.; Lascano-Aimacaña, DS.; Garcia-Sanoguera, D.; Fenollar, O.; Torres Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability. 12(2):1-24. https://doi.org/10.3390/su12020652S124122Fritsch, C., Staebler, A., Happel, A., Cubero Márquez, M., Aguiló-Aguayo, I., Abadias, M., … Belotti, G. (2017). Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability, 9(8), 1492. doi:10.3390/su9081492Bajpai, P. K., Singh, I., & Madaan, J. (2012). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27(1), 52-81. doi:10.1177/0892705712439571Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351-363. doi:10.1002/(sici)1098-2329(199924)18:43.0.co;2-xNdazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042Singh, K. K., Mridula, D., Rehal, J., & Barnwal, P. (2011). Flaxseed: A Potential Source of Food, Feed and Fiber. Critical Reviews in Food Science and Nutrition, 51(3), 210-222. doi:10.1080/10408390903537241Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:13.0.co;2-wJhala, A. J., Weselake, R. J., & Hall, L. M. (2009). Genetically Engineered Flax: Potential Benefits, Risks, Regulations, and Mitigation of Transgene Movement. Crop Science, 49(6), 1943-1954. doi:10.2135/cropsci2009.05.0251Crops http://www.fao.org/faostat/en/#data/QCKhot, S. N., Lascala, J. J., Can, E., Morye, S. S., Williams, G. I., Palmese, G. R., … Wool, R. P. (2001). Development and application of triglyceride-based polymers and composites. Journal of Applied Polymer Science, 82(3), 703-723. doi:10.1002/app.1897Wool, R. P. (2005). POLYMERS AND COMPOSITE RESINS FROM PLANT OILS. Bio-Based Polymers and Composites, 56-113. doi:10.1016/b978-012763952-9/50005-8Samarth, N. B., & Mahanwar, P. A. (2015). Modified Vegetable Oil Based Additives as a Future Polymeric Material—Review. Open Journal of Organic Polymer Materials, 05(01), 1-22. doi:10.4236/ojopm.2015.51001Balanuca, B., Ghebaur, A., Stan, R., Vuluga, D. M., Vasile, E., & Iovu, H. (2018). New hybrid materials based on double-functionalized linseed oil and halloysite. Polymers for Advanced Technologies, 29(6), 1744-1752. doi:10.1002/pat.4279Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063Mahendran, A. R., Wuzella, G., Aust, N., Kandelbauer, A., & Müller, U. (2012). Photocrosslinkable modified vegetable oil based resin for wood surface coating application. Progress in Organic Coatings, 74(4), 697-704. doi:10.1016/j.porgcoat.2011.09.027Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Balart, J. F., Montanes, N., Fombuena, V., Boronat, T., & Sánchez-Nacher, L. (2017). Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour. Journal of Polymers and the Environment, 26(2), 701-715. doi:10.1007/s10924-017-0988-3Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11. doi:10.1016/j.polymertesting.2019.01.017Torres-Giner, S., Chiva-Flor, A., & Feijoo, J. L. (2014). Injection-molded parts of polypropylene/multi-wall carbon nanotubes composites with an electrically conductive tridimensional network. Polymer Composites, 37(2), 488-496. doi:10.1002/pc.23204Keener, T. ., Stuart, R. ., & Brown, T. . (2004). Maleated coupling agents for natural fibre composites. Composites Part A: Applied Science and Manufacturing, 35(3), 357-362. doi:10.1016/j.compositesa.2003.09.014Yang, H.-S., Wolcott, M. P., Kim, H.-S., Kim, S., & Kim, H.-J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79(3), 369-375. doi:10.1016/j.compstruct.2006.02.016Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779Shih, Y.-F., & Huang, C.-C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research, 18(6), 2335-2340. doi:10.1007/s10965-011-9646-yHarmia, T., & Friedrich, K. (1995). Fracture toughness and failure mechanisms in unreinforced and long-glass-fibre-reinforced PA66/PP blends. Composites Science and Technology, 53(4), 423-430. doi:10.1016/0266-3538(95)00031-3Bocqué, M., Voirin, C., Lapinte, V., Caillol, S., & Robin, J.-J. (2015). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry, 54(1), 11-33. doi:10.1002/pola.27917Tábi, T., Égerházi, A. Z., Tamás, P., Czigány, T., & Kovács, J. G. (2014). Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres. Composites Part A: Applied Science and Manufacturing, 64, 99-106. doi:10.1016/j.compositesa.2014.05.001Hindryckx, F., Dubois, P., Patin, M., Jérôme, R., Teyssié, P., & Marti, M. G. (1995). Interfacial adhesion in polyethylene–kaolin composites: Improvement by maleic anhydride-grafted polyethylene. Journal of Applied Polymer Science, 56(9), 1093-1105. doi:10.1002/app.1995.070560909Quiles-Carrillo, L., Boronat, T., Montanes, N., Balart, R., & Torres-Giner, S. (2019). Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents. Polymer Testing, 77, 105875. doi:10.1016/j.polymertesting.2019.04.022Rubilar, M., Gutiérrez, C., Verdugo, M., Shene, C., & Sineiro, J. (2010). FLAXSEED AS A SOURCE OF FUNCTIONAL INGREDIENTS. Journal of soil science and plant nutrition, 10(3). doi:10.4067/s0718-95162010000100010Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., … Chen, L. (2011). Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 106(1), 95-101. doi:10.1016/j.jfoodeng.2011.04.021Lourdin, D., Bizot, H., & Colonna, P. (1997). ?Antiplasticization? in starch-glycerol films? Journal of Applied Polymer Science, 63(8), 1047-1053. doi:10.1002/(sici)1097-4628(19970222)63:83.0.co;2-3Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Perinović, S., Andričić, B., & Erceg, M. (2010). Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochimica Acta, 510(1-2), 97-102. doi:10.1016/j.tca.2010.07.002Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-pine wood flour composites. Polymer Engineering & Science, 48(3), 578-587. doi:10.1002/pen.20971Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M. A., Hassan, A., & Wahit, M. U. (2013). Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Materials & Design (1980-2015), 52, 841-848. doi:10.1016/j.matdes.2013.06.022Hristov, V., & Vasileva, S. (2003). Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromolecular Materials and Engineering, 288(10), 798-806. doi:10.1002/mame.200300110Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024Liu, H., & Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 49(15), 1051-1083. doi:10.1002/polb.22283Alam, J., Alam, M., Raja, M., Abduljaleel, Z., & Dass, L. (2014). MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour. International Journal of Molecular Sciences, 15(11), 19924-19937. doi:10.3390/ijms151119924MANSARAY, K. G., & GHALY, A. E. (1998). Thermogravimetric Analysis of Rice Husks in an Air Atmosphere. Energy Sources, 20(7), 653-663. doi:10.1080/00908319808970084Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random Scission Mechanism. The Journal of Physical Chemistry A, 114(30), 7868-7876. doi:10.1021/jp103171hMelendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152Samal, S., Stuchlík, M., & Petrikova, I. (2017). Thermal behavior of flax and jute reinforced in matrix acrylic composite. Journal of Thermal Analysis and Calorimetry, 131(2), 1035-1040. doi:10.1007/s10973-017-6662-0Laaziz, S. A., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., & Qaiss, A. el kacem. (2017). Bio-composites based on polylactic acid and argan nut shell: Production and properties. International Journal of Biological Macromolecules, 104, 30-42. doi:10.1016/j.ijbiomac.2017.05.184Gonzalez, L., Agüero, A., Quiles-Carrillo, L., Lascano, D., & Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials, 12(10), 1627. doi:10.3390/ma12101627Pfister, D. P., & Larock, R. C. (2010). Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresource Technology, 101(15), 6200-6206. doi:10.1016/j.biortech.2010.02.070Tham, W. L., Ishak, Z. A. M., & Chow, W. S. (2014). Water Absorption and Hygrothermal Aging Behaviors of SEBS-g-MAH Toughened Poly(lactic acid)/Halloysite Nanocomposites. Polymer-Plastics Technology and Engineering, 53(5), 472-480. doi:10.1080/03602559.2013.845208Davis, E. M., Minelli, M., Baschetti, M. G., Sarti, G. C., & Elabd, Y. A. (2012). Nonequilibrium Sorption of Water in Polylactide. Macromolecules, 45(18), 7486-7494. doi:10.1021/ma301484uNing, J., Nguyen, V., Huang, Y., Hartwig, K. T., & Liang, S. Y. (2018). Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. The International Journal of Advanced Manufacturing Technology, 99(5-8), 1131-1140. doi:10.1007/s00170-018-2508-6Tanyildizi, H., & Şahin, M. (2015). Application of Taguchi method for optimization of concrete strengthened with polymer after high temperature. Construction and Building Materials, 79, 97-103. doi:10.1016/j.conbuildmat.2015.01.03

    Manufacturing and Properties of Binary Blend from Bacterial Polyester Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(caprolactone) with Improved Toughness

    Full text link
    [EN] Polyhydroxyalkanoates (PHAs) represent a promising group of bacterial polyesters for new applications. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is a very promising bacterial polyester with potential uses in the packaging industry; nevertheless, as with many (almost all) bacterial polyesters, PHBH undergoes secondary crystallization (aging) which leads to an embrittlement. To overcome or minimize this, in the present work a flexible petroleum-derived polyester, namely poly(e-caprolactone), was used to obtain PHBH/PCL blends with different compositions (from 0 to 40 PCL wt %) using extrusion followed by injection moulding. The thermal analysis of the binary blends was studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TGA). Both TGA and DSC revealed immiscibility between PHBH and PCL. Mechanical dynamic thermal analysis (DMTA) allowed a precise determination of the glass transition temperatures (Tg) as a function of the blend composition. By means of field emission scanning electron microscopy (FESEM), an internal structure formed by two phases was observed, with a PHBH-rich matrix phase and a finely dispersed PCL-rich phase. These results confirmed the immiscibility between these two biopolymers. However, the mechanical properties obtained through tensile and Charpy tests, indicated that the addition of PCL to PHBH considerably improved toughness. PHBH/PCL blends containing 40 PCL wt % offered an impact resistance double that of neat PHBH. PCL addition also contributed to a decrease in brittleness and an improvement in toughness and some other ductile properties. As expected, an increase in ductile properties resulted in a decrease in some mechanical resistant properties, e.g., the modulus and the strength (in tensile and flexural conditions) decreased with increasing wt % PCL in PHBH/PCL blends.This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R. This work was supported by the POLISABIO program, grant number (2019-A02). Juan Ivorra-Martinez is the recipient of an FPI grant from Universitat Politècnica de València (PAID-2019-SP20190011). Luis Quiles-Carrillo wants to thank GVA for his FPI grant (ACIF/2016/182) and MECD for his FPU grant (FPU15/03812). Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images.Ivorra-Martínez, J.; Verdu, I.; Fenollar, O.; Sanchez-Nacher, L.; Balart, R.; Quiles-Carrillo, L. (2020). Manufacturing and Properties of Binary Blend from Bacterial Polyester Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(caprolactone) with Improved Toughness. Polymers. 12(5):1-20. https://doi.org/10.3390/polym12051118S120125Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Wong, J. X., Ogura, K., Chen, S., & Rehm, B. H. A. (2020). Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Frontiers in Bioengineering and Biotechnology, 8. doi:10.3389/fbioe.2020.00156Dang, K. M., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575-581. doi:10.1016/j.carbpol.2014.09.005Carter, P., Rahman, S. M., & Bhattarai, N. (2016). Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application. Journal of Biomaterials Science, Polymer Edition, 27(7), 692-708. doi:10.1080/09205063.2016.1152857Zhang, W., Xiang, Y., Fan, H., Wang, L., Xie, Y., Zhao, G., & Liu, Y. (2020). Biodegradable Urea–Formaldehyde/PBS and Its Ternary Nanocomposite Prepared by a Novel and Scalable Reactive Extrusion Process for Slow-Release Applications in Agriculture. Journal of Agricultural and Food Chemistry, 68(16), 4595-4606. doi:10.1021/acs.jafc.0c00638Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008Mukherjee, T., & Kao, N. (2011). PLA Based Biopolymer Reinforced with Natural Fibre: A Review. Journal of Polymers and the Environment, 19(3), 714-725. doi:10.1007/s10924-011-0320-6Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326Pilania, G., Iverson, C. N., Lookman, T., & Marrone, B. L. (2019). Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers. Journal of Chemical Information and Modeling, 59(12), 5013-5025. doi:10.1021/acs.jcim.9b00807Asrar, J., Valentin, H. E., Berger, P. A., Tran, M., Padgette, S. R., & Garbow, J. R. (2002). Biosynthesis and Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Polymers. Biomacromolecules, 3(5), 1006-1012. doi:10.1021/bm025543aMisra, S. K., Valappil, S. P., Roy, I., & Boccaccini, A. R. (2006). Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules, 7(8), 2249-2258. doi:10.1021/bm060317cTorres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418iMahmood, H., Pegoretti, A., Brusa, R. S., Ceccato, R., Penasa, L., Tarter, S., & Checchetto, R. (2020). Molecular transport through 3-hydroxybutyrate co-3-hydroxyhexanoate biopolymer films with dispersed graphene oxide nanoparticles: Gas barrier, structural and mechanical properties. Polymer Testing, 81, 106181. doi:10.1016/j.polymertesting.2019.106181Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330Hu, Y., Zhang, J., Sato, H., Noda, I., & Ozaki, Y. (2007). Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer, 48(16), 4777-4785. doi:10.1016/j.polymer.2007.06.016Sharma, P., Munir, R., Blunt, W., Dartiailh, C., Cheng, J., Charles, T., & Levin, D. (2017). Synthesis and Physical Properties of Polyhydroxyalkanoate Polymers with Different Monomer Compositions by Recombinant Pseudomonas putida LS46 Expressing a Novel PHA SYNTHASE (PhaC116) Enzyme. Applied Sciences, 7(3), 242. doi:10.3390/app7030242Watanabe, T., He, Y., Fukuchi, T., & Inoue, Y. (2001). Comonomer Compositional Distribution and Thermal Characteristics of Bacterially Synthesized Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s. Macromolecular Bioscience, 1(2), 75-83. doi:10.1002/1616-5195(20010301)1:23.0.co;2-qMorgan-Sagastume, F., Valentino, F., Hjort, M., Cirne, D., Karabegovic, L., Gerardin, F., … Werker, A. (2013). Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Science and Technology, 69(1), 177-184. doi:10.2166/wst.2013.643Sato, H., Nakamura, M., Padermshoke, A., Yamaguchi, H., Terauchi, H., Ekgasit, S., … Ozaki, Y. (2004). Thermal Behavior and Molecular Interaction of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Studied by Wide-Angle X-ray Diffraction. Macromolecules, 37(10), 3763-3769. doi:10.1021/ma049863tOyama, T., Kobayashi, S., Okura, T., Sato, S., Tajima, K., Isono, T., & Satoh, T. (2019). Biodegradable Compatibilizers for Poly(hydroxyalkanoate)/Poly(ε-caprolactone) Blends through Click Reactions with End-Functionalized Microbial Poly(hydroxyalkanoate)s. ACS Sustainable Chemistry & Engineering, 7(8), 7969-7978. doi:10.1021/acssuschemeng.9b00897Xu, P., Cao, Y., Lv, P., Ma, P., Dong, W., Bai, H., … Chen, M. (2018). Enhanced crystallization kinetics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanate) with structural optimization of oxalamide compounds as nucleators. Polymer Degradation and Stability, 154, 170-176. doi:10.1016/j.polymdegradstab.2018.06.001Fenollar, O., Sanchez-Nacher, L., Garcia-Sanoguera, D., López, J., & Balart, R. (2009). The effect of the curing time and temperature on final properties of flexible PVC with an epoxidized fatty acid ester as natural-based plasticizer. Journal of Materials Science, 44(14), 3702-3711. doi:10.1007/s10853-009-3495-7Gassner, F., & Owen, A. J. (1994). Physical properties of poly(β-hydroxybutyrate)-poly(ε-caprolactone) blends. Polymer, 35(10), 2233-2236. doi:10.1016/0032-3861(94)90258-5Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., & Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73(12), 3333-3350. doi:10.1007/s00289-016-1659-6Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018). Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. doi:10.1016/j.clay.2018.06.042Garcia-Garcia, D., Lopez-Martinez, J., Balart, R., Strömberg, E., & Moriana, R. (2018). Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. European Polymer Journal, 104, 10-18. doi:10.1016/j.eurpolymj.2018.04.036Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Arifin, W., & Kuboki, T. (2016). Effects of thermoplastic elastomers on mechanical and thermal properties of glass fiber reinforced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composites. Polymer Composites, 39(S3), E1331-E1345. doi:10.1002/pc.24188Simões, C. L., Viana, J. C., & Cunha, A. M. (2009). Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends. Journal of Applied Polymer Science, 112(1), 345-352. doi:10.1002/app.29425Katsumata, K., Saito, T., Yu, F., Nakamura, N., & Inoue, Y. (2011). The toughening effect of a small amount of poly(ɛ-caprolactone) on the mechanical properties of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/PCL blend. Polymer Journal, 43(5), 484-492. doi:10.1038/pj.2011.12Antunes, M. C. M., & Felisberti, M. I. (2005). [NO TITLE AVAILABLE]. Polímeros, 15(2), 134-138. doi:10.1590/s0104-14282005000200014Przybysz, M., Marć, M., Klein, M., Saeb, M. R., & Formela, K. (2018). Structural, mechanical and thermal behavior assessments of PCL/PHB blends reactively compatibilized with organic peroxides. Polymer Testing, 67, 513-521. doi:10.1016/j.polymertesting.2018.03.014Garcia, D., Balart, R., Sánchez, L., & López, J. (2007). Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polymer Engineering & Science, 47(6), 789-796. doi:10.1002/pen.20755Ding, C., Cheng, B., & Wu, Q. (2010). DSC analysis of isothermally melt-crystallized bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. Journal of Thermal Analysis and Calorimetry, 103(3), 1001-1006. doi:10.1007/s10973-010-1135-8Hosoda, N., Tsujimoto, T., & Uyama, H. (2013). Green Composite of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Reinforced with Porous Cellulose. ACS Sustainable Chemistry & Engineering, 2(2), 248-253. doi:10.1021/sc400290yBurgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2013). Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic Acid) Plasticizers. Journal of Polymers and the Environment, 22(2), 227-235. doi:10.1007/s10924-013-0628-5Avolio, R., Castaldo, R., Gentile, G., Ambrogi, V., Fiori, S., Avella, M., … Errico, M. E. (2015). Plasticization of poly(lactic acid) through blending with oligomers of lactic acid: Effect of the physical aging on properties. European Polymer Journal, 66, 533-542. doi:10.1016/j.eurpolymj.2015.02.040Hinuber, C., Haussler, L., Vogel, R., Brunig, H., Heinrich, G., & Werner, C. (2011). Hollow fibers made from a poly(3-hydroxybutyrate)/poly-ε-caprolactone blend. Express Polymer Letters, 5(7), 643-652. doi:10.3144/expresspolymlett.2011.62Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.03

    Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil

    Full text link
    [EN] The present study describes the effect of maleinized hemp seed oil (MHO) on the physical performance of polylactide (PLA) pieces. To this end, PLA pieces with varying MHO contents in the 0¿10 wt% range were manufactured by twin-screw extrusion (TSE) followed by injection molding. The resultant pieces were characterized in terms of their mechanical, thermal, and thermomechanical properties. The obtained properties suggested that, unlike typical plasticizers, MHO does not only induce an increment in elongation at break and impact resistance but it also enhances both elastic modulus and tensile strength. In addition, a moderate decrease in the glass transition temperature (Tg) was observed. This was ascribed to simultaneous linear chain-extension, branching, and/or cross-linking phenomena due to the reaction of the multiple maleic anhydride (MAH) groups present in MHO with the terminal hydroxyl groups of the PLA chains. Furthermore, morphology characterization revealed that, though certain phase separation occurred at its highest content, MHO was finely dispersed as submicron droplets within the PLA matrix contributing to improving toughness. The use of multi-functionalized reactive vegetable oils thus represents a highly sustainable solution to reduce the intrinsic brittleness of PLA materials without compromising their mechanical resistance and the toughened biopolymer pieces described herein can find interesting applications in, for instance, rigid packaging.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) (projects MAT2014-59242-C2-1-R and AGL2015-63855-C2-1-R.). L. Quiles-Carrillo acknowledges Generalitat Valenciana (GV) for financial support through a FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812).Quiles-Carrillo, L.; Blanes-Martínez, M.; Montanes, N.; Fenollar, O.; Torres-Giner, S.; Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal. 98:402-410. https://doi.org/10.1016/j.eurpolymj.2017.11.039S4024109

    A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-functionalized additives derived from linseed oil and petroleum

    Full text link
    [EN] This research work describes the manufacturing and characterization of novel engineering materials consisted of fully bio-based blends of polyamide 1010 (PA1010) with 20 wt% of polylactide (PLA). Four different compatibilizers were used to enhance the miscibility and the performance of the biopolymer blends. Two multi-functionalized vegetable oils (maleinized linseed oil (MLO) and epoxidized linseed oil (ELO)) and two petroleum-derived glycidyl-based additives (epoxy styrene-acrylic oligomer (ESAO) and styrene-glycidyl methacrylate copolymer (PS-GMA)) were tested during melt compounding. The resultant biopolymer blends were processed by either cast film extrusion or injection molding to obtain films and pieces, respectively. Thin films with an average thickness of 50¿60 µm and thick pieces of 4 mm were obtained, and their mechanical, morphological, thermal, thermomechanical, barrier and, optical properties were characterized. Although all four compatibilizers successfully provided compatibilization to the blends, the chemically modified vegetable oils, that is, MLO and ELO yielded the injection-molded pieces with the most balanced mechanical properties in terms of strength and toughness. Besides, the resultant films showed very low oxygen transmission rate values, thus broadening the potential of these biopolymer blends for the food packaging industryThis research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. Quiles-Carrillo and Torres-Giner are recipients of a FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD) and a Juan de la Cierva contract (IJCI-2016-29675) from MICIU, respectively. Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images. Authors thank Polyscope for kindly supplying XibondTM 920 for this study.Quiles-Carrillo, L.; Fenollar, O.; Balart, R.; Torres-Giner, S.; Rallini, M.; Dominici, F.; Torre, L. (2020). A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-functionalized additives derived from linseed oil and petroleum. eXPRESS Polymer Letters. 14(6):583-604. https://doi.org/10.3144/expresspolymlett.2020.48S58360414
    corecore